- Outline
- Part 1 Core PyTorch
- 1 Introducing deep learning and the PyTorch library
- 1.1 What is PyTorch? 2
- 1.2 What is this book? 2
- 1.3 Why PyTorch? 3
- 1.4 PyTorch has the batteries included 10
- 2 It starts with a tensor
- 2.1 Tensor fundamentals 18
- 2.2 Tensors and storages 22
- 2.3 Size, storage offset, and strides 24
- 2.4 Numeric types 30
- 2.5 Indexing tensors 31
- 2.6 NumPy interoperability 31
- 2.7 Serializing tensors 32
- 2.8 Moving tensors to the GPU 34
- 2.9 The tensor API 35
- 3 Real-world data representation with tensors
- 3.1 Tabular data
- 3.2 Time series
- 3.3 Text
- 3.4 Images
- 3.5 Volumetric data
- 4 The mechanics of learning 67
- 4.1 Learning is parameter estimation 70
- 4.2 PyTorch’s autograd: Backpropagate all things 83
- 5 Using a neural network to fit your data 101
- 5.1 Artificial neurons 102
- 5.2 The PyTorch nn module 110
- 5.3 Subclassing nn.Module 120
- 1 Introducing deep learning and the PyTorch library
- Part 2 Learning from images in the real world: Early detection of lung cancer
- Part 3 Deployment
- Part 1 Core PyTorch
- Links
- LeCun力荐,PyTorch官方权威教程书来了,意外的通俗易懂 https://zhuanlan.zhihu.com/p/93131985
- Code https://github.com/deep-learning-with-pytorch/dlwpt-code
Deep Learning with PyTorch
January 1, 2020